
The history of thermodynamics begins in 1824, 
when the French engineer Nicolas Léonard 
Sadi Carnot observed that a steam engine’s 
efficiency has a natural limit. The German 
physicist Rudolf Clausius made sense of this 
with a mathematical inequality that became 
known as the second law of thermodynamics: a 
quantity that he called entropy keeps increas-
ing until a system reaches equilibrium. This law 
has since become a fixed feature of university 
physics curricula, and remained unimproved 
for more than a century — until 25 years ago, 
when Christopher Jarzynski1 proposed an 
improved relationship that has intriguing con-
sequences for microscopic systems, such as 
the tiny engines that drive living organisms.

To understand the second law of thermody-
namics, imagine stretching a rubber band. This 
is an example of a thermodynamic transfor-
mation — a process by which a system moves 
from one state of thermodynamic equilibrium 
to another. To stretch the band, you have to 
perform work and use up some energy. Part 
of this work is stored, and remains thermo-
dynamically accessible. This is known as the 
free energy and can be retrieved by relaxing 
the band. The rest of the work is eventually 
irreversibly released as heat into the system’s 
surroundings — and the faster you stretch the 
band, the more work will be dissipated. 

The way that the second law describes the 
physics of this process is best understood 
in terms of the Austrian physicist Ludwig 
Boltzmann’s interpretation of entropy as 
a measure of randomness. The second law 
states that the work that is dissipated into 
the system’s surroundings is greater than or 
equal to zero on average: the dissipated work 
warms up the environment, thus increasing its 
randomness — and its entropy. Unfortunately, 
there’s no way of reliably extracting heat from 
the environment by stretching and relaxing 
the rubber band. 

In just four pages, Jarzynski used math-
ematical tools that had been around since 
Boltzmann’s time to come up with a version 
of the second law that is just as general as the 

original, but is couched as an equality rather 
than an inequality. It states that an expo-
nential function of the work that you put in, 
averaged over many experiments, is exactly 
equal to the same function of the free-energy 
change. This implies that when the exponen-
tial of negative dissipated work is averaged 
over many experiments, the result is exactly 
equal to one. This mathematical expression 
is known as the Jarzynski equality, and it 
puts tighter constraints on thermodynamic 
transformations than does the second law. 
In fact, the second law follows directly from 
Jarzynski’s equality (Fig. 1). 

So, let’s imagine repeating our stretching 
experiment: the amount of work dissipated will 
vary each time the experiment is performed, 
because the environment is subject to random 

thermal variations. Whereas the second law 
deals only with the average behaviour of the 
work dissipated by a certain transformation, 
Jarzynski’s equality also encompasses these 
fluctuations. For a macroscopic system such 
as a rubber band, the fluctuations are negligi-
ble, but they become crucial for microscopic 
systems such as single biomolecules. Indeed, 
thermal randomness has the largest impact 
on nanoscale systems operating close to the 
thermal energy associated with these fluctu-
ations, which is a very small 4 × 10–21 joules at 
room temperature. The main consequences of 
Jarzynski’s equality thus lie in the microscopic 
realm, where randomness has a prominent 
role.

At such small scales, fluctuations are so large 
that some events actually extract heat from 
the environment — allowing a biomolecule to 
be stretched with less work than the change in 
the system’s free energy. On average, though, 
the second law still stands: these rare events 
can’t be used to produce energy for free. This 
is similar to a lottery, in which it is possible on 
rare occasions to earn money, even though 
players lose money on average. In Jarzynski’s 
equality, these rare events have a prominent 
role, because their importance is amplified by 
the exponential function (Fig. 1). The equality 
reveals a subtle balance between these rare 
lottery-winning events that extract energy 
from the thermal environment, and the typ-
ical losers that dissipate work.

To test this theoretical prediction, a ther-
modynamic experiment was set up at this 
microscopic scale. Five years after Jarzynski’s 
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25 years of nanoscale 
thermodynamics
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A paper published in 1997 brought the thermodynamics of the 
nineteenth century into the twenty-first century — expanding 
the physics of transformations involved in the operation of 
steam engines to the realm of molecular motors.
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Figure 1 | Improving the second law of thermodynamics. When a system is moved from one state of 
thermodynamic equilibrium to another — for example, when a single biomolecule is stretched — a certain 
amount of the work exerted is dissipated and lost into the surroundings. If this transformation is repeated 
many times, the work that is dissipated will vary from one experiment to the next. Most of the time, it is 
positive, but in a few, rare events, the system actually absorbs energy from the environment. Jarzynski1 
derived a mathematical equality that implies that the average of the exponential of negative dissipated 
work, relative to the thermal energy, is exactly one. Because the exponential function curves upwards, the 
average dissipated work is always greater than or equal to zero, which is the second law of thermodynamics. 
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Proteins function through their interactions 
with other biomolecules, and can be modu-
lated not only by changes to the amino-acid 
residues at the protein–biomolecule inter-
face, but also by changes at distal sites — a 
phenomenon called allostery. Discovering 
which protein sites are allosteric has been 
difficult, because methods that simply and 
comprehensively quantify allosteric effects 
have been lacking. On page 175, Faure et al.1 
report the first integrated method to globally 
map, quantify and distinguish the effects of 
mutations on allostery and protein stability. 
Their approach is also easy to do, making it 
as accessible to geneticists as it is to biophysi-
cists. This method will have broad applications 
in biotechnology and drug discovery.

Advances in experimental technologies, 
especially DNA sequencing, have enabled the 
simultaneous measurement of the effects of 
thousands of mutations on a single protein2. 
Many hundreds of these high-throughput 
experiments have been published3, focusing 
on assays that can infer mutational effects on 
a wide range of protein properties and pro-
cesses — including heat stability, catalytic 

activity, binding to other proteins and small 
molecules, cell growth and drug resistance. 
The COVID-19 pandemic has showcased the 
value of these technologies, which have been 
used to screen how mutations in the spike pro-
tein of the SARS-CoV-2 virus affect the protein’s 
expression and binding to host receptors4 and 
antibodies5. Computational methods have 
also matured, and can now make surprisingly 
accurate predictions of mutational effects6 
across thousands of proteins without using 
experimental data7. All of these successes 
have led to the emergence of an international 
consortium called the Atlas of Variant Effects 
Alliance (www.varianteffect.org), whose goals 
include the open sharing of experimental and 
computational methods among scientists.

However, in practice, neither the experi-
mental nor computational approaches have 
been able to distinguish the effects of muta-
tions on different protein traits. To predict  
and, ultimately, engineer proteins that have 
desired traits requires an understanding of 
how biophysical properties are encoded by 
protein sequences.

Furthermore, ambiguities in discerning 
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Debora S. Marks & Stephen W. Michnick

A general method that quantifies and disentangles the effects 
of a gene’s mutations on the traits of its protein enables 
assessments of mutational effects on protein biophysics for 
many of the proteins of a living organism. See p.175

discovery, a team of biophysicists used light 
traps called optical tweezers to manipulate a 
single molecule of RNA, which interacts with 
itself to form structures resembling hairpins. By 
repeatedly opening and closing an RNA hairpin, 
the researchers showed that the work fluctua-
tions accurately obeyed the Jarzynski relation2.

The nanometre scale is also the realm of 
molecular motors: protein complexes that act 
as mechanical engines in the cell. Molecular 
motors can perform work by stretching 
biopolymers or by transporting cargo against 
a drag force. In doing so, they drive mechanical 
processes — from cell division to muscle con-
traction — occurring at larger scales. A single 
molecular motor is fuelled by molecules that 
each provide around 20 times the thermal 
energy at room temperature. This means that 
the operation of biomolecular engines is, in 
principle, constrained by Jarzynski’s equality, 
making his research the first step in revealing 
how the nanoscale thermodynamics of molec-
ular motors3 goes beyond the macroscopic 
thermodynamics of steam engines.

Jarzynski’s discovery — an equality hidden 
in plain sight behind the second law’s inequal-
ity — also had a major impact on the physics 
of non-equilibrium processes. Strikingly, the 
relationship makes no assumptions about how 
fast a thermodynamic transformation takes 
place. It thus applies, for example, if the sys-
tem is driven far from thermal equilibrium dur-
ing the experiment. This in turn implies that 
the work fluctuations of a non-equilibrium 
process are directly related to equilibrium 
free-energy differences — a surprising result, 
suggesting that such processes obey general 
laws that can be derived exactly. 

Such laws are known as fluctuation theo-
rems, and they had already started to appear 
in the years before Jarzynski’s result, but their 
impact had been appreciated by only a narrow 
group of researchers4,5. The most popular fluc-
tuation theorem, Gavin Crooks’ refinement of 
Jarzynski’s equality, offers a statistical descrip-
tion of the arrow of time of a process — a way 
of calculating the probability that a video of 
an experiment is running forwards or back-
wards6. This surge of fundamental discoveries 
sparked the development of modern stochas-
tic thermodynamics, which is a mathematical 
framework describing the thermodynamic 
properties of microscopic systems ranging 
from nanometre-scale molecular motors to 
micrometre-scale colloids7. 

Although Jarzynski’s equality remains 
essential to our understanding of modern 
statistical physics and has been verified in 
many contexts2,8, its direct application has so 
far proven underwhelming, and it has yet to 
result in any major technological advances. 
For instance, although it can be used as a tool 
to determine free-energy differences in molec-
ular dynamics simulations9, this application 
is limited by the fact that the relationship 

relies on very rare events. A promising class 
of thermodynamical uncertainty relationship 
has emerged to describe non-equilibrium fluc-
tuations, which are more practical because 
they do not rely on such rare events10,11.

All in all, Jarzynski’s article remains a 
physicist’s favourite, and a must-read for 
students, for its simplicity and elegance, as 
well as its impact on our understanding of 
thermodynamics. Rarely has a breakthrough 
discovery been so clearly evident at the time 
of its publication.
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